Question 1.

Draw different pairs of circles. How many points does each pair have in common? What is the maximum number of common points?

Solution:
Let us draw different pairs of circles as shown below:

(i)
(ii)
(iii)

We have,

Figure	Maximum number of common points
(i)	nil
(ii)	one
(«i)	two

Thus, two circles can have at the most two points in common.

Question 2.

Suppose you are given a circle. Give a construction to find its centre.
Solution:

Steps of construction:
Step I : Take any three points on the given circle. Let these points be A, B and C.
Step II: Join AB and BC.
Step III : Draw the perpendicular bisector, PQ of AB.
Step IV: Draw the perpendicular bisector, RS of BC such that it intersects PQ at O .

Thus, ' O ' is the required centre of the given drcle.

Question 3.

If two circles intersect at two points, prove that their centres lie on the perpendicular bisector of the common chord.
Solution:
We have two circles with centres O and O ', intersecting at A and B.
$\therefore A B$ is the common chord of two circles and $O O^{\prime}$ is the line segment joining their centres. Let $O O^{\prime}$ and $A B$ intersect each other at M.

\therefore To prove that $O O^{\prime}$ is the perpendicular bisector of AB , we join $O A, O B, O^{\prime} A$ and $O^{\prime} B$. Now, in $\triangle Q A O$ and $\triangle O B O$ ', we have
$\mathrm{OA}=\mathrm{OB}$ [Radii of the same circle]
O'A = O'B [Radii of the same circle]
OO' = OO' [Common]
$\therefore \triangle \mathrm{OAO}^{\prime} \cong \triangle \mathrm{OBO}^{\prime}$ [By SSS congruence criteria]
$\Rightarrow \angle 1=\angle 2$, [C.P.C.T.]
Now, in $\triangle A O M$ and $\triangle B O M$, we have
$\mathrm{OA}=\mathrm{OB}$ [Radii of the same circle]
OM = OM [Common]
$\angle 1=\angle 2$ [Proved above]
$\therefore \Delta \mathrm{AOM}=\triangle \mathrm{BOM}$ [By SAS congruence criteria]
$\Rightarrow \angle 3=\angle 4$ [C.P.C.T.]
But $\angle 3+\angle 4=180^{\circ}$ [Linear pair]
$\therefore \angle 3=\angle 4=90^{\circ}$
\Rightarrow AM $\perp \mathrm{OO}^{\prime}$
Also, AM = BM [C.P.C.T.]
$\Rightarrow M$ is the mid-point of $A B$.

Thus, OO^{\prime} is the perpendicular bisector of $A B$.

Thanks.....

